Expeditious Modular Assembly of Multisubstituted Cyclohexanes via Dioxanone-Dienes

Yoshifumi Aoki, Yuta Mochizuki, Tomohiro Yoshinari, Ken Ohmori, and Keisuke Suzuki* Department of Chemistry, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8551

(Received August 4, 2011; CL-110655; E-mail: ksuzuki@chem.titech.ac.jp)

An effective route to multisubstituted cyclohexanes has been developed by exploiting the Diels-Alder reaction of easily available dienes within a dioxanone moiety with electrondeficient dienophiles.

Modular assembly of organic molecules with sizable molecular weight and/or complexity is gaining increasing importance for developing effective routes to architecturally complex, biologically active natural/unnatural products.¹ Associated with the importance of *cyclohexane* motifs with functional and stereochemical complexity,² we report herein assembly of a cyclohexane skeleton from three components, that is, an olefin, an aldehyde, and a β -keto ester equivalent, that is, iododioxinone I (Scheme 1).

Scheme 1. Cyclohexane modular assembly.

As the key conjunctive agent of our plan for assembling three components, we focused on diene **II** as the synthetic platform, which could be derived from iododioxinone **I** and an aldehyde (Scheme 2). Three promising features in **II** are, (1) high Diels–Alder reactivity expected from two vicinal exocyclic alkenes (*s-cis* diene), (2) characteristic reactivity by donor/ acceptor substitution pattern,³ and (3) capability of generating acyl ketene species from the dioxinone moiety⁴ that is regenerated by the Diels–Alder reaction, amenable for various synthetic manipulations. In addition, the dioxanone scaffold may also provide a platform for stereoselective reactions.⁵

We report herein facile synthesis of dienes **II** and their excellent behaviors in the Diels–Alder reactions.

Scheme 2. Synthetic plan.

Readily available iododioxinone $1^{6,7}$ served as a platform to various dienes. The protocol is exemplified by the preparation of

diene **3a** (Scheme 3). To a mixture of iodide **1** and cyclohexanecarbaldehyde in Et₂O (-90 °C) was added *n*-BuLi, where a rapid halogen–lithium exchange followed by the carbonyl addition gave alcohol **2a** in 91% yield.⁸ Alcohol **2a**, thus obtained, was treated with triflic anhydride in the presence of Hünig's base, giving cleanly diene **3a** as the single product in 80% yield. The (*Z*,*Z*) stereochemistry was proven by NOE study.

Scheme 3. Synthesis of diene 3a.

Scheme 4 shows a rationale for the (Z,Z)-selectivity; Given the 1,4-elimination occurred from the intermediary triflate with the *anti* and/or *syn* relationship of the proton and the triflate,⁹ the 1,3-allylic strain¹⁰ suggests that the reaction would occur from conformers **A** and/or **B**, either of which gives the (Z,Z) isomer.

Scheme 4. Possible conformations for 1,4-elimination.

This protocol allowed facile access to several other dienes **3b–3e** from the corresponding aldehydes (Scheme 5). Rigorous (Z,Z)-selectivity applied in all of these cases. A limitation was that the reaction of alcohol **2b**, the propanal adduct, produced also a positional isomer **4b** in 38% yield.

Having these dienes in hand, we examined their reactivity in the Diels–Alder reactions⁷ (Table 1). Upon reaction of **3a** with *N*-phenylmaleimide (toluene, room temp., 1 h), the *endo* cycloadduct **5a** was obtained as a single diastereomer in 95% yield (Run 1). The stereochemistry of **5a** was confirmed by X-ray analysis¹¹ (Figure 1). Other dienes were also subjected to the reaction with *N*-phenylmaleimide, giving good to excellent yield of the respective *endo* cycloadduct as a single isomer. Although the diene **3c** with *sec*-alkyl substituent provided the *endo* cycloadduct **5c** in excellent yield in a short time (Run 3), the yields remained moderate for the reaction of *prim*-alkyl or

1193

Scheme 5. Preparation of other dienes.

Table 1. Diels-Alder reaction of dienes 3a-3e

	R O O Sa-e	Pl O≡ to roo	N C	Ph N N N N N N N N N N N N N N N N N N N)
Run	Substrate	R	Time/h	Product	Yield/%
1	3a	Cy ^a	1	5a	95
2	3b	Et	0.5	5b	46
3	3c	<i>i</i> -Pr	4	5c	90
4	3d	t-Bu	18	5d	80
5	3e	Ph	17	5e	52

^aCy: cyclohexyl.

Figure 1. X-ray structure of 5a.

phenyl-substituted ones **3b** and **3e** (Runs 2 and 5). *tert*-Alkyl-substituted diene **3d** gave the *endo* cycloadduct **5d** in high yield, although longer reaction time was required (Run 4).

The reaction of diene 3a with dimethyl fumarate afforded cycloadduct 6a in 51% yield as a single isomer among two possible diastereomers (Scheme 6). The stereochemistry of cycloadduct 6a was determined by NOE study.

These data convinced us of the successive one-pot reaction of the diene formation and the Diels–Alder reaction, which proved indeed the case^{7,12} (Table 2). Starting with the treatment of alcohol **2a** with Tf₂O, and after confirming the formation of diene **3a** by TLC analysis, successive addition of *N*-phenylmaleimide cleanly affected the cycloaddition, giving the cycloadduct **5a** in excellent yield (Run 1).

Scheme 6. Reaction with dimethyl fumarate.

This one-pot protocol could be applied to the reactions of alcohols 2 with various substituents, although the reaction temperature and time were slightly different (Runs 2–5).

^aCy: cyclohexyl.

The one-pot protocol was further applicable to a trinitrogen heterocycle (Scheme 7). When 4-phenyl-1,2,4-triazole-3,5-dione was subjected to the one-pot reaction with alcohol 2a, the cycloadduct 7a was obtained in 76% yield.

Scheme 7. One-pot reaction with another dienophile.

The cycloadduct is amenable to various transformations by exploiting the dioxinone moiety. An example is the following:⁷ upon heating of dioxinone **5a** in toluene in the presence of ethanol, β -keto ester **8a** was obtained in 92% yield as the single diastereomer, which has five contiguous stereogenic centers (Scheme 8). The stereochemistry of **8a** was determined by NOE study. Interestingly, the β -keto ester **8a** existed completely in the keto form in CDCl₃ as well as acetone- d_6 .

Scheme 8. Transformation to β -keto ester 8a.

The β -keto ester **8a** is regarded as an assemblage of three components (Scheme 9), implying promising potential of this approach in the modular synthesis of various natural/unnatural compounds with a cyclohexane structure motif.

Scheme 9. Three components assembly.

Further work is in progress on the exploration of the synthetic potential of diene \mathbf{II} , including its ambiphilic reactivity coming from the substitution pattern with an electron-donating and -withdrawing group.

References and Notes

- a) S. L. Schreiber, *Science* 2000, 287, 1964. b) M. D. Burke,
 S. L. Schreiber, *Angew. Chem., Int. Ed.* 2004, 43, 46.
- 2 T.-L. Ho, Carbocycle Construction in Terpene Synthesis, Wiley-VCH, Weinheim, Germany, **1988**.
- 3 T.-S. Chou, C.-Y. Chang, M.-C. Wu, S.-H. Hung, H.-M. Liu, W.-Y. Yeh, J. Chem. Soc., Chem. Commun. 1992, 1643.
- 4 a) G. Jäger, J. Wenzelburger, *Justus Liebigs Ann. Chem.* 1976, 1689. b) M. Sato, N. Kanuma, T. Kato, *Chem. Pharm. Bull.* 1982, *30*, 1315. c) M. Sato, H. Ogasawara, E. Yoshizumi, T. Kato, *Chem. Pharm. Bull.* 1983, *31*, 1902.

- 5 Selected examples are following: a) M. Demuth, A. Palomer, H.-D. Sluma, A. K. Dey, C. Krüger, Y.-H. Tsay, *Angew. Chem., Int. Ed. Engl.* **1986**, *25*, 1117. b) D. Seebach, J. Zimmermann, *Helv. Chim. Acta* **1986**, *69*, 1147. c) M. Sato, K. Takayama, T. Furuya, N. Inukai, C. Kaneko, *Chem. Pharm. Bull.* **1987**, *35*, 3971. d) K. Ohmori, T. Suzuki, K. Miyazawa, S. Nishiyama, S. Yamamura, *Tetrahedron Lett.* **1993**, *34*, 4981.
- 6 T. Iwaoka, T. Murohashi, N. Katagiri, M. Sato, C. Kaneko, J. Chem. Soc., Perkin Trans. 1 1992, 1393.
- 7 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/ index.html.
- 8 T. Yoshinari, K. Ohmori, K. Suzuki, *Chem. Lett.* **2010**, *39*, 1042.
- 9 For a review, see: F. M. Bickelhaupt, *Mass Spectrom. Rev.* 2001, 20, 347.
- 10 For a review, see: R. W. Hoffmann, *Chem. Rev.* **1989**, *89*, 1841.
- 11 Crystallographic data reported in this manuscript have been deposited with Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-838020. Copies of the data can be obtained free of charge via http:// www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge, CB2 1EZ, UK; fax: +44 1223 336033; or deposit@ccdc.cam.ac.uk).
- 12 A typical procedure for the one-pot reaction is described for the reaction of alcohol 2a: To a solution of alcohol 2a(20.2 mg, 75.3 µmol) in CH₂Cl₂ (0.75 mL) was added *i*-Pr₂NEt (52.5 µL, 301 µmol) at -30 °C followed by Tf₂O (19.0 µL, 113 µmol). After stirring for 20 min, *N*-phenylmaleimide (130 mg, 753 µmol) was added, and the stirring was continued for 0.5 h. The resulting solution was allowed to warm slowly to -15 °C. After stirring for 3 h at -15 °C, phosphate buffer (pH 7) was added. Usual extractive workup followed by purification by preparative TLC (hexane/ EtOAc = 4/1, three times) gave **5a** (29.9 mg, 95%) as a white powder.